Search results for " Culture Media"

showing 10 items of 12 documents

AN IL-6/IL-6 SOLUBLE RECEPTOR (IL-6R) HYBRID PROTEIN (H-IL-6) INDUCES EPO-INDEPENDENT ERYTHROID DIFFERENTIATION IN HUMAN CD34+CELLS

2000

H-IL-6 is a hybrid protein constructed to contain IL-6 and its soluble receptor linked by a flexible peptide chain. Here we show that H-IL-6 strongly enhances proliferation of human CD34(+)cells in serum-free liquid culture, and that the majority of the cells generated belong to the erythroid lineage, being positive for the marker Glycophorin A. Conversely, H-IL-6 does not increase the number of myeloid, CD13-positive cells. Comparable effects are observed on progenitors from cord blood and adult peripheral blood. Therefore, H-IL-6 triggers an erythroid-inducing signal in haematopoietic progenitor cells, independently from erythropoietin (EPO).

ErythrocytesTime FactorsMyeloidCellular differentiationInterleukin 6Antigens CD34BiochemistryCulture Media Serum-FreeSerum-Freehemic and lymphatic diseasesReceptorsLeukocytesImmunology and AllergyErythropoiesisGlycophorinsStem Cell FactorbiologyChemistryCord bloodCell DifferentiationHematologyFetal BloodFlow CytometryEndothelial stem cellHaematopoiesismedicine.anatomical_structureGlycophorinCD34+medicine.drugRecombinant Fusion ProteinsMononuclearImmunologyCD13 AntigensmedicineHumansGlycophorinAntigensProgenitor cellErythropoietinMolecular BiologyInterleukin 3Interleukin-6CD34+; Cord blood; Erythropoiesis; Interleukin 6; Stem cell factor; Antigens CD34; CD13 Antigens; Cell Differentiation; Culture Media Serum-Free; Erythrocytes; Erythropoietin; Fetal Blood; Flow Cytometry; Glycophorin; Hematopoietic Stem Cells; Humans; Interleukin-6; Leukocytes Mononuclear; Peptides; Receptors Interleukin-6; Recombinant Fusion Proteins; Stem Cell Factor; Time Factors; Immunology and Allergy; Immunology; Biochemistry; Hematology; Molecular BiologyHematopoietic Stem CellsReceptors Interleukin-6Molecular biologyCulture MediaErythropoietinLeukocytes Mononuclearbiology.proteinCD34PeptidesCytokine
researchProduct

Cloning and expression of genes involved in conidiation and surface properties of Penicillium camemberti grown in liquid and solid cultures.

2008

International audience; Based on bioinformatic data on model fungi, the rodA and wetA genes encoding, respectively, a RodA hydrophobin protein and the WetA protein involved in conidiation mechanisms, were PCR-cloned and characterized for the first time in Penicillium camemberti. These results, completed by a sequence of the brlA gene (available in GenBank), which encodes a major transcriptional regulator also involved in the conidiation mechanism, were used to compare, by qRT-PCR, the expression of the three genes in liquid and solid cultures in a synthetic medium. While expression of the brlA and wetA genes increased dramatically in both culture conditions after 4 days of growth, expressio…

MESH: Sequence Analysis DNAMESH : Spores FungalMESH : Molecular Sequence DataConidiationMESH: Amino Acid SequenceMESH: Base SequenceGene Expression Regulation FungalGene expressionMESH : Fungal ProteinsCloning MolecularFungal proteinMESH : Amino Acid SequenceMESH : Sequence AlignmentGeneral MedicineSpores FungalMESH: MyceliumCell biologyWetaPenicillium camembertiMESH: Fungal ProteinsMESH : HydrophobicityHydrophobic and Hydrophilic InteractionsMESH : MyceliumMESH: Gene Expression Regulation FungalHyphaMESH : Cloning MolecularHydrophobinMolecular Sequence DataMESH: Sequence AlignmentBiologyMicrobiologyMicrobiologyFungal ProteinsMESH: Spores FungalMESH : Gene Expression Regulation FungalMESH: Cloning Molecular[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceMolecular BiologyGene[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: PenicilliumMESH: HydrophobicityMESH: Molecular Sequence DataBase SequenceMyceliumPenicilliumSequence Analysis DNAMESH : Penicilliumbiology.organism_classificationCulture MediaMESH: Culture MediaMESH : Base SequenceMESH : Culture MediaSequence AlignmentMESH : Sequence Analysis DNA
researchProduct

Cytokine profile of breast cell lines after different radiation doses

2017

Purpose: Ionizing radiation (IR) treatment activates inflammatory processes causing the release of a great amount of molecules able to affect the cell survival. The aim of this study was to analyze the cytokine signature of conditioned medium produced by non-tumorigenic mammary epithelial cell line MCF10A, as well as MCF7 and MDA-MB-231 breast cancer cell lines, after single high doses of IR in order to understand their role in high radiation response. Materials and methods: We performed a cytokine profile of irradiated conditioned media of MCF10A, MCF7 and MDA-MB-231 cell lines treated with 9 or 23 Gy, by Luminex and ELISA analyses. Results: Overall, our results show that both 9 Gy and 23 …

0301 basic medicineIonizing radiationRadiology Nuclear Medicine and ImagingCell SurvivalCytokine profileBreast NeoplasmsInflammationRadiationRadiation ToleranceIonizing radiation03 medical and health sciences0302 clinical medicineBreast cancerbreast cancerCell Line TumormedicinecytokineHumansskin and connective tissue diseasesCell survivalRadiological and Ultrasound TechnologyChemistrybreast cancer cytokines inflammation Ionizing radiation Breast Neoplasms Cell Line Tumor Cell Survival Culture Media Conditioned Dose-Response Relationship Radiation Humans Phenotype Radiation ToleranceDose-Response Relationship Radiationmedicine.diseasecytokinesDose–response relationship030104 developmental biologyPhenotypeCell cultureinflammation030220 oncology & carcinogenesisCulture Media ConditionedImmunologyCancer researchmedicine.symptomBreast NeoplasmHuman
researchProduct

Screening of lactic acid bacteria for reducing power using a tetrazolium salt reduction method on milk agar.

2013

WOS:000315703100020 ; www.elsevier.com/locate/jbiosc; International audience; Reducing activity is a physiological property of lactic acid bacteria (LAB) of technological importance. We developed a solid medium with tetrazolium dyes enabling weakly and strongly reducing LAB to be discriminated. It was used to quantify populations in a mixed culture (spreading method) and screen strains (spot method).

MESH: Oxidation-Reduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionTetrazolium Saltstetrazolium saltApplied Microbiology and Biotechnologychemistry.chemical_compoundAgarMESH: AnimalsFood science0303 health sciencesbiologyplate media04 agricultural and veterinary sciencesMESH: Tetrazolium SaltsSolid mediumLactic acidMilkMESH: AgarBiochemistryLactobacillaceaeMESH : AgarFormazanOxidation-ReductionBiotechnologyfood.ingredientMESH: LactobacillaceaeSpot methodBioengineering03 medical and health sciencesfoodoxidoreduction potentialMixed culturereducing powerAnimalsLactic AcidMESH : Tetrazolium SaltsMESH : Oxidation-Reduction030306 microbiologyscreeningMESH : Lactobacillaceae0402 animal and dairy scienceOxidation reductionbiology.organism_classification040201 dairy & animal scienceCulture MediaMESH: Milklactic acid bacteriaAgarchemistryMESH : MilkMESH : Lactic AcidMESH: Culture MediaMESH: Lactic AcidMESH : Culture MediaMESH : Animals[SDV.AEN]Life Sciences [q-bio]/Food and NutritionBacteria
researchProduct

Electrochemical Quantification of H2O2 Released by Airway Cells Growing in Different Culture Media

2022

Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham’s F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrode…

Mechanical EngineeringH2O2H<sub>2</sub>O<sub>2</sub>; electrochemical sensor; cell culture media; graphene oxide; gold; bronchial epithelial cell; lung adenocarcinoma cell; oxidative stress; cigarette smoke extract; resveratrolelectrochemical sensorgoldresveratrollung adenocarcinoma cellSettore ING-IND/23 - Chimica Fisica ApplicataControl and Systems Engineeringcell culture mediabronchial epithelial cellSettore ING-IND/17 - Impianti Industriali Meccanicigraphene oxideoxidative stressElectrical and Electronic Engineeringcigarette smoke extract
researchProduct

Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the gamma-decalactone production by Yarrowia lipolytica.

2000

International audience; Size of methyl ricinoleate droplets during biotransformation into gamma-decalactone by Yarrowia lipolytica was measured in both homogenized and non-homogenized media. In non-homogenized but shaken medium, droplets had an average volume surface diameter d32 of 2.5 microm whereas it was 0.7 microm in homogenized and shaken medium. But as soon as yeast cells were inoculated, both diameters became similar at about 0.7 microm and did not vary significantly until the end of the culture. The growth of Y. lipolytica in both media was very similar except for the lag phase which was lowered in homogenized medium conditions.

0106 biological sciences[SDV.BIO]Life Sciences [q-bio]/BiotechnologyTime FactorsCell01 natural sciencesApplied Microbiology and BiotechnologyLactonesBiotransformationMESH : Particle SizeYeastsMESH: Microscopy Confocal[INFO.INFO-BT]Computer Science [cs]/BiotechnologyComputingMilieux_MISCELLANEOUSBiotransformation0303 health sciencesMicroscopyMicroscopy ConfocalbiologyMESH: YeastsMESH : Lactones[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitologymedicine.anatomical_structureBiochemistryConfocalSURFACE ACTIVERicinoleic Acids[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesMESH : Time Factors03 medical and health sciencesMESH : Biotransformation010608 biotechnologymedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Particle SizeParticle SizeMESH : Microscopy Confocal[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMethyl ricinoleateMESH: BiotransformationMESH : YeastsChromatography030306 microbiologyMESH: Time Factors[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyYarrowiabiology.organism_classificationYeastMESH: Ricinoleic AcidsCulture Media[SDV.BIO] Life Sciences [q-bio]/Biotechnology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyMESH : Ricinoleic AcidsMESH: Culture MediaMESH : Culture Media
researchProduct

Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains.

2008

ABSTRACT Listeria monocytogenes is a food pathogen that can attach on most of the surfaces encountered in the food industry. Biofilms are three-dimensional microbial structures that facilitate the persistence of pathogens on surfaces, their resistance toward antimicrobials, and the final contamination of processed goods. So far, little is known about the structural dynamics of L. monocytogenes biofilm formation and its regulation. The aims of this study were, by combining genetics and time-lapse laser-scanning confocal microscopy (LSCM), (i) to characterize the structural dynamics of L. monocytogenes EGD-e sessile growth in two nutritional environments (with or without a nutrient flow), and…

Image ProcessingMESH : Analysis of Variance[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyMESH : Green Fluorescent Proteinsmedicine.disease_causeMESH: Listeria monocytogenesApplied Microbiology and BiotechnologyBacterial Adhesionlaw.inventionGreen fluorescent proteinPlasmidComputer-AssistedlawGenes ReporterImage Processing Computer-AssistedMESH : Bacterial ProteinsMESH: Microscopy ConfocalPathogenMESH: Bacterial Proteins2. Zero hunger0303 health sciencesMicroscopyMicroscopy ConfocalPhotobleachingEcologybiologyMESH: KineticsMESH : Genes ReporterMESH: Image Processing Computer-AssistedMESH : BiofilmsConfocalMESH : KineticsMESH: PhotobleachingMESH : Image Processing Computer-AssistedBiotechnologyPlasmidsMESH : Bacterial AdhesionConfocalGreen Fluorescent ProteinsMESH: BiofilmsMESH : PhotobleachingMicrobiology03 medical and health sciencesMESH: Gene Expression ProfilingMESH: Green Fluorescent ProteinsListeria monocytogenesBacterial ProteinsConfocal microscopyMESH: PlasmidsMESH: Analysis of VariancemedicineMESH: Bacterial AdhesionMESH : Microscopy ConfocalReporter030304 developmental biologyAnalysis of Variance030306 microbiologyMESH : Gene Expression ProfilingGene Expression ProfilingMESH: Genes ReporterBiofilmbiochemical phenomena metabolism and nutritionbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyListeria monocytogenesCulture MediaKineticsGenesMESH : PlasmidsBiofilmsMESH: Culture MediaFood MicrobiologyMESH : Culture MediaMESH : Listeria monocytogenesBacteriaFood ScienceApplied and environmental microbiology
researchProduct

Combined action of redox potential and pH on heat resistance and growth recovery of sublethally heat-damaged Escherichia coli

2000

International audience; The combined effect of redox potential (RP) (from -200 to 500 mV) and pH (from 5.0 to 7.0) on the heat resistance and growth recovery after heat treatment of Escherichia coli was tested. The effect of RP on heat resistance was very different depending on the pH. At pH 6.0, there was no significant difference, whereas at pH 5.0 and 7.0 maximum resistance was found in oxidizing conditions while it fell in reducing ones. In sub-lethally heat-damaged cells, low reducing and acid conditions allowed growth ability to be rapidly regained, but a decrease in the redox potential and pH brought about a longer lag phase and a slower exponential growth rate, and even led to growt…

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationHot TemperatureThermal resistanceMESH: Hot Temperaturemedicine.disease_causeApplied Microbiology and BiotechnologyRedox03 medical and health sciencesExponential growthMESH : Hydrogen-Ion Concentration[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyOxidizing agentEscherichia colimedicineGrowth rate[INFO.INFO-BT]Computer Science [cs]/Biotechnology[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-Reduction0303 health sciencesbiologyMESH: Escherichia coli030306 microbiologyChemistryGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationEnterobacteriaceaeCulture Media[INFO.INFO-BT] Computer Science [cs]/Biotechnology[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiochemistryMESH: Culture MediaBiophysicsMESH : Culture MediaMESH : Hot TemperatureOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyBacteriaBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells

2004

Hematopoietic (Hem) and endothelial (End) lineages derive from a common progenitor cell, the hemangioblast: specifically, the human cord blood (CB) CD34+KDR+ cell fraction comprises primitive Hem and End cells, as well as hemangioblasts. In humans, the potential therapeutic role of Hem and End progenitors in ischemic heart disease is subject to intense investigation. Particularly, the contribution of these cells to angiogenesis and cardiomyogenesis in myocardial ischemia is not well established. In our studies, we induced myocardial infarct (MI) in the immunocompromised NOD-SCID mouse model, and monitored the effects of myocardial transplantation of human CB CD34+ cells on cardiac function.…

Vascular Endothelial Growth Factor AneoangiogenesisTime FactorsAngiogenesisCell TransplantationHeart VentriclesCD34Myocardial InfarctionAntigens CD34ApoptosisMice SCIDBiologySCIDPeripheral blood mononuclear cellBiochemistryCulture Media Serum-FreeSerum-FreeCell FusionMiceVasculogenesisMice Inbred NODparasitic diseasesGeneticsAnimalsHumansVentricular Functionendothelial precursorsCell LineageProgenitor cellAntigensMolecular Biologyneoangiogenesis endothelial precursors hematopoietic stem cellsHemodynamicsFetal BloodVascular Endothelial Growth Factor Receptor-2Coculture Techniqueshematopoietic stem cellsCulture MediaTransplantationAutocrine CommunicationCord bloodImmunologycardiovascular systemCancer researchHemangioblastInbred NODCD34neoangiogenesis; endothelial precursors; hematopoietic stem cells; Animals; Antigens CD34; Apoptosis; Autocrine Communication; Cell Fusion; Cell Lineage; Coculture Techniques; Culture Media Serum-Free; Fetal Blood; Heart Ventricles; Hemodynamics; Humans; Mice; Mice Inbred NOD; Mice SCID; Myocardial Infarction; Time Factors; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Ventricular Function; Cell Transplantation; Biotechnology; Biochemistry; Molecular Biology; GeneticsBiotechnology
researchProduct

Effects of oxidoreduction potential combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobac…

2002

International audience; The effects of oxidoreduction potential (Eh) combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobacillus plantarum were studied. The culture medium was set at pH 5, and two different Eh values were adjusted using nitrogen (Eh = +350 mV) or hydrogen (Eh = -300 mV) gas. In reducing condition, the growth was slowed and the acidification delayed at 37 degrees C, but not at 10 degrees C. A synergistic inhibitory effect of reducing Eh, acetic acid and NaCl was observed, mainly for delaying the lag phase before acidification. These results may be explained by changes in ATPase activity, membrane fluidity and surface…

MESH: Oxidation-ReductionMESH : Acetic AcidMESH: Sodium ChlorideHydrogenMembrane FluiditySodiumInorganic chemistrychemistry.chemical_elementMESH : Membrane Fluidity[SDV.BC]Life Sciences [q-bio]/Cellular BiologySodium ChlorideMicrobiologyAcetic acidchemistry.chemical_compoundLactobacillusGeneticsMembrane fluidity[INFO.INFO-BT]Computer Science [cs]/BiotechnologyMolecular BiologyMESH : Temperature[SDV.BC] Life Sciences [q-bio]/Cellular BiologyAcetic AcidMESH : Oxidation-Reductionbiology[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyTemperaturebiology.organism_classificationNitrogenMESH: TemperatureCulture MediaMESH : Sodium ChlorideLactobacillusMembrane[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH: Acetic AcidMESH: Culture MediaMESH : Culture MediaMESH : LactobacillusOxidation-ReductionMESH: LactobacillusLactobacillus plantarum[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: Membrane FluidityNuclear chemistry
researchProduct